Material passport

How make it real?

Mayara Regina Munaro

São Paulo University, Brazil mayara.munaro@lme.pcc.usp.br

Component without ID >>>> WASTE Component ID >>>> VALUE Why? Who? How?

Why?

Current performance condition

Information for maintenance and repair

Clarity and authenticity of information

Increase competitiveness

Tracking

Industrial symbiosis

Partnership

Market differential

Design guidance

Environmental index!

Resource efficiency

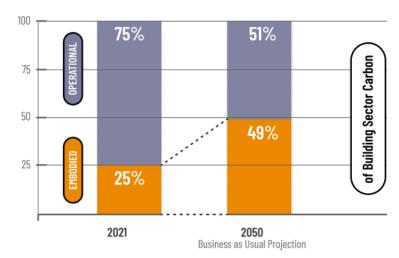
Reuse and repurposing

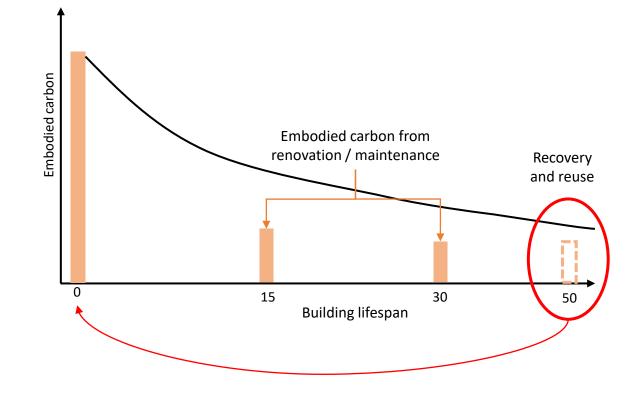
Recycling optimization

Secondary materials market Eco-friendly material choices

Carbon materials' impact

*


Circular index Improved building durability


Why?

Projected Contributions from Embodied and Operational Carbon within the Building Sector

From 2021 to 2050 with Business as Usual Projections

UNEP. (2023). Building Materials and the Climate: constructing a new future.

Why?

1

Reuse and repurposing products

2

Reduce costs for the construction chain

Who?

Building general information Product Safety, health Operational aspects:

Maintenance, cleaning Assembly, disassembly Expected service life... Building general information Product general information Building operational aspects Building end-of-life aspects Environmental performance

Building general information Product general information Product properties Product Safety, health

Users, Tenants Project developer, Managers

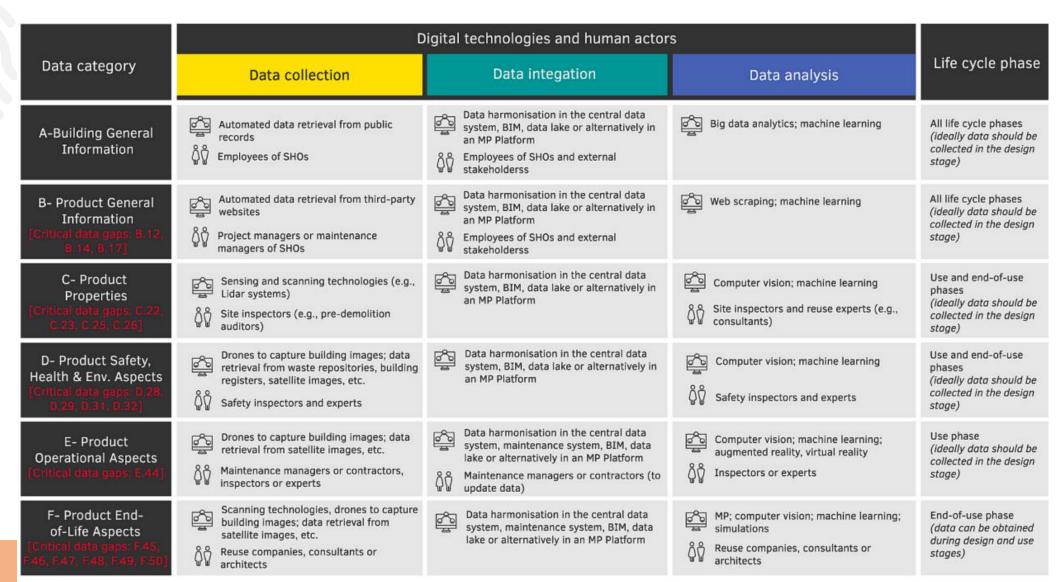
Public authorities

Architects, Builders, Engineers

Product properties
Dimensions, weight
Volume, quantity
Composition
Physical properties

Producers, Suppliers Financial services providers

Recyclers, Reuse companies

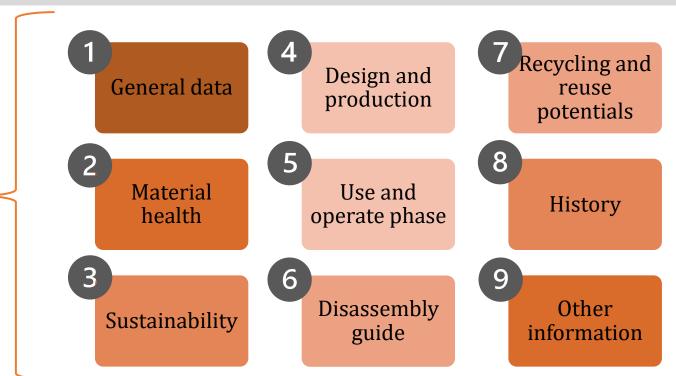

Education & Research

Building general information Building operational aspects

Recycling potential
Reuse potential
Disposal options
End-of-life economic value
Availability in future for reuse

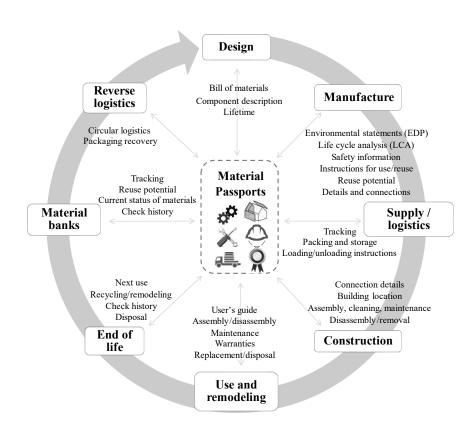
Life cycle data management Carbon impact

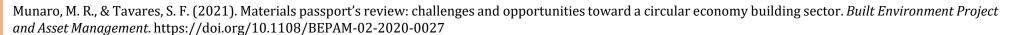
Çetin, S., Raghu, D., Honic, M., Straub, A., & Gruis, V. (2023). Data requirements and availabilities for material passports: A digitally enabled framework for improving the circularity of existing buildings. *Sustainable Production and Consumption*, 40, 422–437.

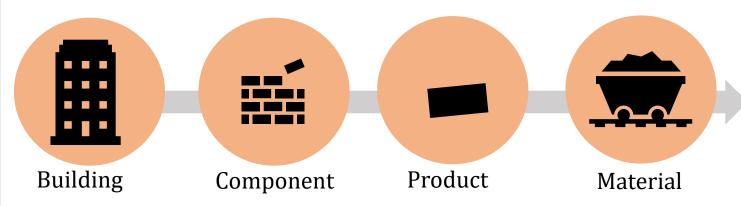

How?

Key components

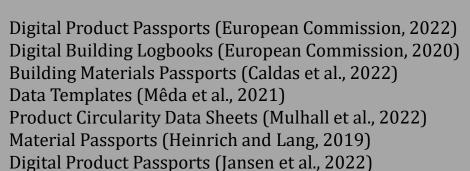
- Product performance
- Product Composition
- Product Location
- Maintenance and Care
- Reuse and Recycling Potential
- Environmental Impact
- Legal and Safety Information


Model developed




Material Passport proposed

Product Product tr. Manufactu	acking code: rer:	Last updaten: yy/mm/dd	Material Passport	01 (number)
1 General data	±00	5 Use and operate phase		40
Product/commercial name Manufacturer's name/details Composition/materials Product properties (physical, chemical, biological) Product picture/product main function	Use recommendation/restrictions Performance characteristics Technical data (strain/weight) Temporal inf. (manufacturing date, expected lifetime)	Positioning and location in the building Cleaning and maintenance instructions Connections details and requirements	Monitoring and consupt	ion (energ
2 Material health (safe data sheets)	0	6 Disassembly guide		ąII,
Security information (warnings/recommendations Material composition (toxicity, additives) Risk identification/fire protection	Handling and storage instructions Product certifications and labels Legislation and policy	Disassembly instructions (removal/replacement of pieces)	Packaging/storage requi Transportation instruction	
3 Sustainability	12	7 Recycling and re-use potential	s	>
Environmental declaration Life cycle assessment (LCA) LCA boundaries and methodology Material criticality Renewable/non-renewable, treated/untreated	LCA results and interpretaction	End-of-life considerations (reuse/recyc Disposal options/decomposability	ling/remodeling)	
4 Design and production	43	8 History		6
Manufacturing process and techniques Installation and handling instructions	Traceability (RFID tags, barcodes) Logistics (packaging, supply chain	Use period Verifications made during use	Latest uses/operations Updates during operation	ons
Certifications (energy labeling, material testing)	managements, transportation	9 Other information		0.
Digitisation (BIM)	requirements)	References used/standards consulted	Complementary materia	ıl



What about the name?

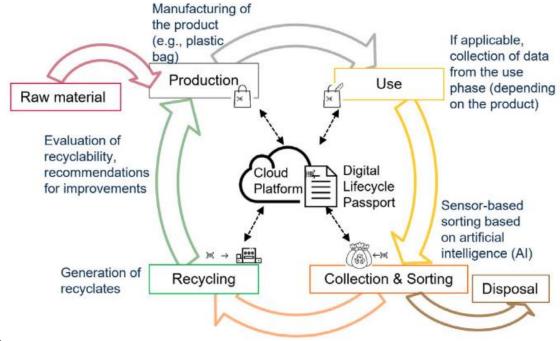
Digital Battery Passports (Berger et al., 2022)

Circular Material Passports (Goswein et al., 2022) Waste material passport (Wu et al., 2023)

...

Building Passport?
Product Passport?
Material Passport?
Building Materials Passports?

- 1. Digital database or software
- 2. BIM
- 3. Cloud-based
- 4. Physical files or documentation
- 5. QR codes or Barcodes
- 6. Blockchain



Plociennik, C., Pourjafarian, M., Nazeri, A., Windholz, W., Knetsch, S., Rickert, J., Ciroth, A., Precci Lopes, A. D. C., Hagedorn, T., Vogelgesang, M., Benner, W., Gassmann, A., Bergweiler, S., Ruskowski, M., Schebek, L., & Weidenkaff, A. (2022). Towards a Digital Lifecycle Passport for the Circular Economy. *Procedia CIRP*, 105, 122–127.

Madaster: the cadastre for materials and products

Digitizing material passport for sustainable construction projects using BIM

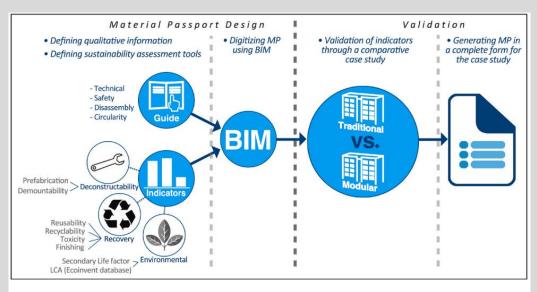
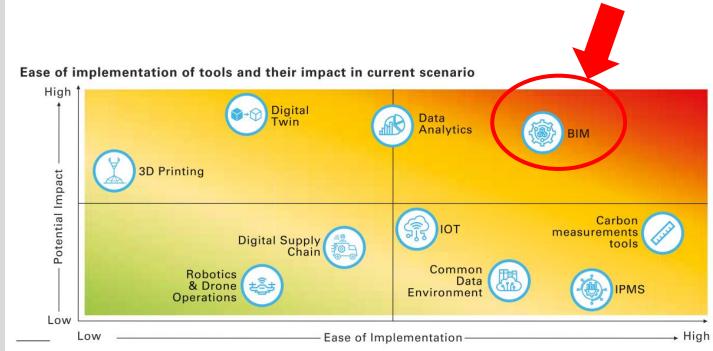



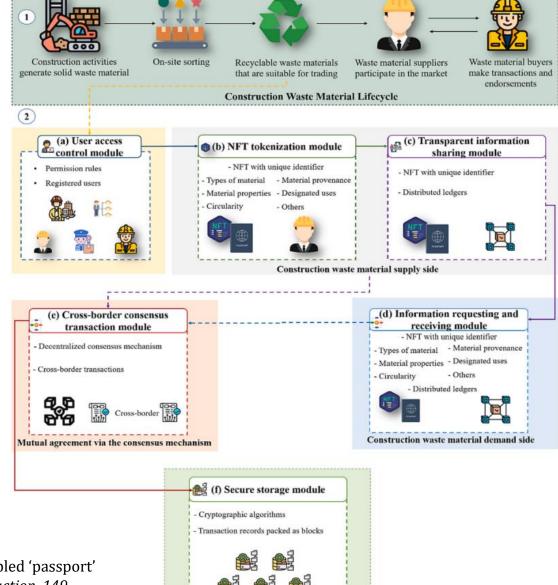
Fig. 1. Proposed framework of developing a digital material Passport.

Atta, I., Bakhoum, E. S., & Marzouk, M. M. (2021). Digitizing material passport for sustainable construction projects using BIM. *Journal of Building Engineering*, 43.

What about the storage?

33. Based on KPMG in India analysis

KPMG. (2023). Embodied carbon management for global infrastructure.


A blockchain non-fungible token-enabled 'passport' for construction waste material cross-jurisdictional trading

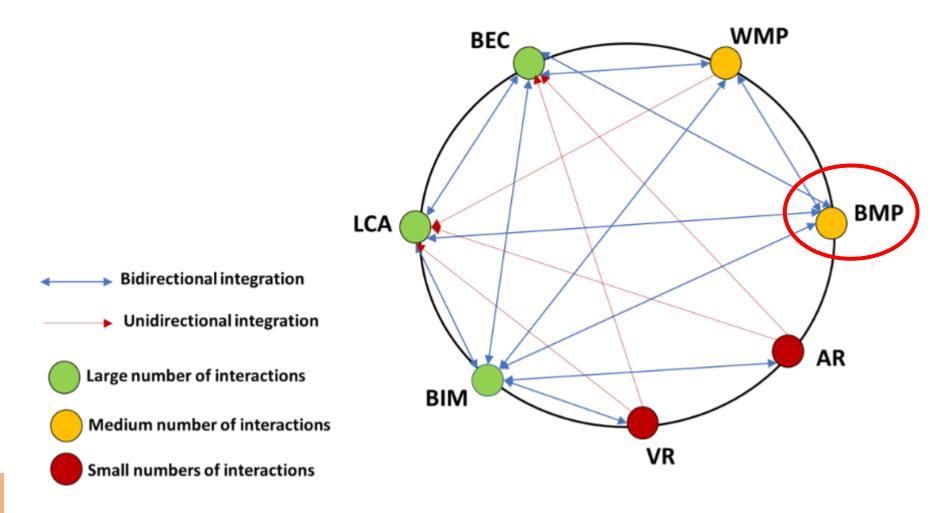
Construction waste material transaction records Name of the waste material supplier: Contractor A Waste material selling price: \$45/m³ Place of trading: Site 01 A

Period of trading: 08/10/2022-10/02/2023
Tel and address: 92932xxx, 8 X road, PY company

Date: 08/10/2022 Signature: Mike

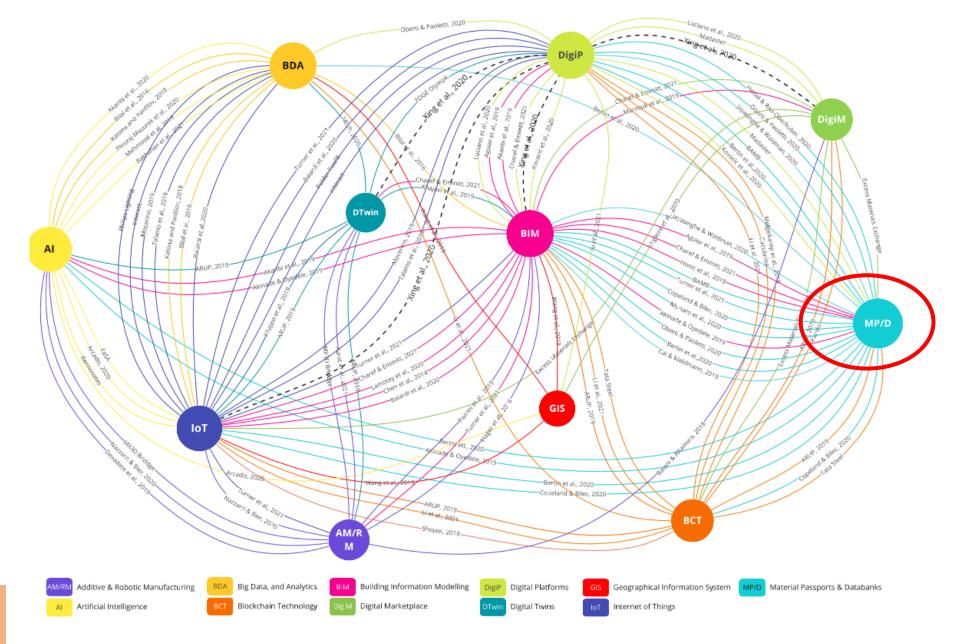
Wu, L., Lu, W., Peng, Z., & Webster, C. (2023). A blockchain non-fungible token-enabled 'passport' for construction waste material cross-jurisdictional trading. *Automation in Construction*, 149.

- 1. Digital database or software
- 2. BIM
- 3. Cloud-based
- 4. Physical files or documentation
- 5. QR codes or Barcodes
- 6. Blockchain


OpenAI

What are the main features that material passport storage technology needs to have?

1. Data Organization and Structure 2. Accessibility and Security 3. User-Friendly Interface 4. Integration with Other Systems 5. Scalability 6. Data Versioning and History 7. Search and Retrieval Tools 8. Visualization and Reporting 9. Audit Trail and Compliance 10. Mobile Accessibility 11. Data Export and Sharing 12. Data Validation and Quality Assurance 13. Lifecycle Management 14. Compliance with Standards 15. Regular Updates and Support 16. User Training and Support Resources 17. Scalability and Future-Proofing


Technologies	Easy to access	Update	Security	Data export and sharing	Lifecycle management	Integration	History
Digital database or software	/	/	X		?	X	/
BIM	?	/	?		?	?	/
Cloud-based	/	/	?		?	?	/
Physical files or documentation	X	X	X	X	X	X	X
QR codes	?	?	V	?	?		?
Blockchain	?	Ż		?	,	X	/

Tendencies – connections between technologies

Caldas, L. R., Silva, M. V., Silva, V. P., Carvalho, M. T. M., & Filho, R. D. T. (2022). How Different Tools Contribute to Climate Change Mitigation in a Circular Building Environment?—A Systematic Literature Review. *Sustainability (Switzerland)*, 14(7).

Çetin, S., de Wolf, C., & Bocken, N. (2021). Circular digital built environment: An emerging framework. *Sustainability (Switzerland)*, 13(11).

How make it real?

MPs vary in terminology, content, scale, technology use, and maturity level and overlook users' data needs.

- Simple
- Free
- Easy to access
- Updatable
- Consistent
- Compatible
- Reliable
- Comprehensible...

...throughout the life cycle of the material/product?

Private initiatives?

or

Public initiatives?

Design Manufacture Supply Construction Use and remodeling End of life Material bank Reuse

Pathway

Property registration

- National repository
- Secondary material markets

PUBLIC POLICIES!

- New jobs
 - New business models

The inclusion of a MP in a property registration process depends on the specific regulations and requirements of the jurisdiction:

- **1.Check Local Regulations**
- 2. Engage with Stakeholders
- **3.Promote Awareness**
- **4.Collaborate with Experts**
- **5.Pilot Projects**

Thank you!

Mayara Regina Munaro

São Paulo University, Brazil mayara.munaro@lme.pcc.usp.br